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Abstract—This paper presents LiteTurn, a new gesture-controlled 
turn-signaling system for cyclists that uses cheap consumer 
devices and energy-efficient Bluetooth 4.0 (BLE) to provide 
cyclists and motorists with better road awareness when sharing 
the road. Initially conceived at HackTX 2014, a large hackathon 
event at The University of Texas at Austin, the LiteTurn 
prototype was designed and developed over 24 hours and placed 
3rd overall. The final product makes use of a variety of sensors 
found in commonplace consumer devices, along with a small 
wireless LED product, to detect cyclist states and automate turn 
light usage. In particular, the LiteTurn system consists of four 
major components:

a) Gesture Recognition using wrist wearable devices equipped 
with accelerometer and gyroscope sensors.

b) Turn Completion Detection using GPS-enabled smartphones.

c) Continuous LED updates for braking/rolling indicators.

d) Practical, cheap, and energy-efficient wireless LED hardware.

I  Introduction

In a large number of major cities across the U.S., bicycling 
has seen a rise in popularity and use. Accompanying this rise in 
popularity has been an increased focus on bicycle safety and 
infrastructure, with government agencies  frequently treading 
the line in order to satisfy both cyclists and motorists and 
accommodate both methods of transportation on the road safely 
and conveniently. Today, cyclists are still seen as secondary 
occupants on the road, and there has been a severe lack of 
adequate, readily-available accessories for cyclists that keeps 
them, and others sharing the road, aware of the conditions at 
hand, which can rapidly change in response to unpredictable or 
erratic behavior by cyclists and motorists alike. In particular, 
there have not been any cheap, readily-available turn signal 
products that are easy to use and are clearly visible to 
pedestrians, motorists, and cyclists traveling in a variety of 
different angles and directions.

    Although consumer products have been developed to sell 
embedded lights sewn into clothing such as gloves, jackets, and 
helmets, these products have a high price point, require 
accessory clothing to be worn by the user, and require the user to 
make use of additional controls embedded in the clothing or 
attached to the handlebars to be effective. Some of these 
products also fail to improve visibility by a large amount; for 
example, the new Zackees turn-signal gloves requires users to 
hold a button on their glove to light up LEDs embedded in the 
gloves themselves, which are then deactivated as the rider holds 
the handlebars to start and complete the turn safely. 

    LiteTurn aims to solve all of these problems using cheap 
hardware, readily-available consumer devices with on-board 
accelerometer and gyroscopic sensors, and energy-efficient BLE 
wireless communication to provide cyclists with gesture-
controlled turn signal lights that provide additional services 
beyond turn signaling. In addition to being able to signal a turn, 
the LiteTurn system will be able to provide custom lighting 
animations in neutral states and display braking. rolling, and 
hazard information in the form of acceleration-sensitive lighting.

   Three main goals are targeted for improvement over 
traditional cyclist hand signals:

a) Visibility: At wide angles and in low-lit conditions, hand 
signals are not visible to motorists and other cyclists.

b) Mobility: Hand signals are impractical and unsafe when both 
hands need to be on the handlebars. In particular, approaching 
intersections at the top or bottom of a steep hill are targeted 
along with in-motion turning and signaling.

c) Utility: Although an officially-recognized braking hand signal 
is in effect within certain countries, it is often unsafe to use 
under normal conditions. As a result, there are no practical hand 
signals for indicating braking, rolling, and hazard status to 
motorists sharing the road.



         By utilizing the official, recognized bicycle hand signals for 
turning and stopping, cyclists will not have to adapt to the new 
system -- the only requirement for cyclists is to download a 
mobile app on their smartphone and accompanying smartwatch, 
which will communicate with the cheap LiteTurn hardware 
mounted on their bicycle. In addition, this system is potentially 
compatible using any combination of smartphone and smart 
wearable device that provides orientation and GPS location 
sensor information, reducing the costs of the system 
significantly by using commonplace devices that many people 
already own and wear on a daily basis. The LiteTurn system can 
also replace the head and taillights commonly used on bicycles 
in low-lighting conditions, augmenting them with automated 
signaling and aesthetic capabilities at a fractional increase in 
price.

Figure 1: Illustrations of the four main cyclist hand signals. 
From left: left, right, right-alternate, and braking signals.

II Previous Work

       Although there has not been considerable research in the 
specific domain of automated turn light handling, various 
consumer products have been prototyped or released for use as 
cyclist turn lights.

a) DORA, LumaHelm: Two conceptual products that propose 
LED-embedded helmets in an attempt to address visibility 
issues. Many other helmets proposals have been released by 
various marketing and research labs, all with the same 
considerable problems regarding bulky accessory helmets and 
handlebar-mounted controls.

b) Zackees: A new LED-embedded glove product that activates 
using a circuit-completion paradigm between two metal rivets. 
The gloves are sold as a solution to low-lighting visibility issues, 
but fail to improve visibility in any situation where the user must 
place their hands on the handlebars for safety.

c) HelSTAR Helmet: Another helmet designed to communicate 
with the turn lights of motorcycle-based 12V navigation systems 
using RF communication.

d) MIT Labs Research: Sensor and LED-embedded jackets.

All of these products have major consumer usability and 
accessibility issues that prevent widespread use on the road. The 
introduction of novel accessory clothing embedded with sensors 
and LEDs limits the universal fit of the product for users of 
different body types, and requires the user to put in unnecessary 
work into wearing, washing, and taking care of unique clothing 
embedded with electronics. These devices also require 
additional learning by the user, introducing physical controllers 
embedded in the clothing or attached to the handlebars. Finally, 
all of these devices have projected and actual price points that 
are extremely high due to their novelty, selling as low as $80 for 
Zackees gloves and over $180 for the embedded helmets.

All three of the aforementioned problems are unnecessary 
complications to solve an otherwise basic and simple need: 
cheap, natural, and easy-to-use turn lights for cyclists to 
incorporate into their daily routine without interfering with it. 
With over 58% of American adults owning smartphones, and a 
growing number adopting the new wave of smartwatches and 
wrist wearables, the sensor technology for implementing reliable 
turn lights is already being carried by a significant portion of the 
cyclist population. The LiteTurn solution taps into the existing 
personal mobile sensor network to provide cheap, efficient, and 
available cyclist turn lights.

III Design

   The focus for the first stage of LiteTurn was on accurate 
detection of turn signal gestures and turn completions, and the 
hardware used to display highly-visible lighting. 

Gesture Recognition:

    In a general system, turn signal gestures are detected using 
accelerometer and gyroscope sensory data interpreted into 
quaternions, which can be represented as yaw, pitch, and roll 
rotations around a center of mass. Detection of a turn occurs 
when the sensors are oriented at a 90-degree yaw from the rider 
with the correct roll (wrist rotation) orientation. Above a certain 
threshold, a larger pitch rotation indicates an inward turn, rather 
than an outward turn. 

   
Figure 2: Illustrations of yaw, pitch, and roll rotation axes 
around the center of mass using accelerometer and 
gyroscope sensors attached to the cyclist’s wrist.



    However, variations and inaccuracies in the sensors can 
produce noise within the readings, and this is often amplified 
when riding a fragile, physical piece of transport such as a 
bicycle. This is especially notable in the yaw rotation reading 
discrepancies that appear when transitioning from the outward 
turn signal to the inward, bent turn signal. Readings should 
therefore be transformed using a noise-reduction filter and sub-
divided into discrete segments of 360-degree space along the 
dimensional plane. This sub-division makes it easy to define 
regions in 3-dimensional space where gestures can be identified 
within a window w of the perfect gesture.

       The overarching gesture recognition system starts with the 
extraction of YPR world coordinates from accelerometer and 
gyroscope data. These coordinates are translated into relative 
coordinates using GPS location and temporal bearing 
calculations. In particular, the last known location bearing is 
used to correct the yaw coordinate. The resultant YPR relative 
coordinates in (0, 2pi) space are discretized into k segments of 
the degree spaces to get an integer range of [0, k) for each of the 
three orientation coordinates. A short delay is introduced into the 
gesture recognition module to reduce the number of false 
positives returned by the system. In preliminary experiments, 
requiring the cyclist to hold the gesture for 150 milliseconds was 
found to be a satisfactory compromise between turn recognition 
accuracy and false positive rate.

Figure 3: Gesture Recognition Module Pipeline for 
coordinate conversion.

Turn Completion Detection:

    Turn completion can be broadly detected using GPS location 
bearings, which provides degrees along a cardinal directional 
system. Since most turns are roughly right turns or u-turns, 
detecting 90-degree and 180-degree changes within a small 
threshold of error will accurately provide evidence of an ended 
turn. Bearing readings should be taken once per some distance 
window, which should be large enough to avoid false positives, 
but short enough to be responsive to the user’s activities. In 

practical experiments, 1s/10m was chosen as a good polling 
interval for GPS coordinates.

      A short running history of GPS bearings is kept to reduce the 
effects of multiple precise bearing updates occurring during the 
motion of a single turn. On completion of the turn, the bearing 
history is cleared to prevent introduction of repeated detections.

The use of a location-based turn completion module provides 
both upsides and downsides. The use of a minimum distance 
polling method prevents small position changes from triggering 
false positives, allowing cyclists to wait out a turn on their 
bicycle with small localized movement at the intersection. 
However, two specific occurrences are missed by this basic 
implementation. 

Lane changes indicated by a turn gesture are not covered by the 
basic 90-degree threshold implementation. Instead, more precise 
measures must be used to cover this case. In particular, 
accelerometer data used in conjunction with bearing calculations 
may be sufficient for detecting local and momentary horizontal 
movement while traveling in a globally tangential direction. 

Gentle turns, e.g. forks and road cutoffs, introduce a much 
more difficult problem. Distinguishing between making a gentle 
turn onto another road and traveling forwards along a curved 
road is a much more complex to resolve. Increasing the turn 
tolerance will provide more angular leeway into what is 
considered a turn, but is highly fragile as a solution and can 
introduce false positives into the system. Instead, a more robust 
solution may come in the form of a linear or exponentially 
increasing timeout for turn signals. This can result in immediate 
recognition of a sharp 90-degree turn, while still allowing small 
turns to be completed after a small timeout.

Braking / Rolling Signals:

      Braking and rolling signals can be directly implemented 
using streaming accelerometer values from the cyclist’s 
smartphone. Localized movement from the physical act of 
pedaling will be drowned out by the larger global movement of 
the bicycle in physical space, allowing raw accelerometer values 
to be extracted, and the vector component of the traveling 
direction to be determined using the last known bearing. The 
magnitude of this vector is used to interpolate the color of the 
light, which is sent as an RGB value over BLE or WiFi to the 
microcontroller controlling the LEDs. A smaller update interval 
can be used over BLE due to the smaller latency of a direct 
paired connection between the smartphone and microcontroller.

IV Initial Implementation and Experiments

At HackTX 2014, a prototype consumer LiteTurn product 
was developed using a Myo gesture-recognition armband, a 
Spark Core micro-controller, and a 24-Neopixel LED ring. The 
product used Myo gesture and orientation sensors to detect turn 



signal gestures, Android GPS bearing information to detect end 
of turns, and a wireless core hooked up to the Neopixel ring, 
which acted as turn signal lights. Thse three major components 
combined to become the fully-functional product that was 
demoed and, ultimately, placed 3rd overall in the hackathon.

(a) A Myo gesture-recognition armband

(b) A 24-Neopixel RGB LED ring and 2200mAh LiPo battery 
wired to a contained Spark Core micro-processor with 

embedded WiFi chip.

Figure 4: The hardware for LiteTurn version 1. (a) The Myo 
armband contains an accelerometer, gyroscope, and EMG 
muscle activity sensors to detect activities such as fingers 
spread, closed fist, and directional hand waving. (b) The 
LiPo battery powers the core with 5V, which sends data to a 
digitally-addressable ring of current-controlled LEDs.

    The first component involved grabbing gesture and 
orientation data from the Myo’s accelerometer, gyroscope, and 
EMG muscle activity sensors to detect when the cyclist signals 
for a turn (Figure 3a). Although Myo gestures (FIST, FINGERS 
SPREAD) worked as a precautionary filter to prevent false 
positives from coming through, it required extra knowledge and 
adaptation by the cyclist to understand the required pose to 
activate the lights. 

    Through experimentation, we found that the orientation data 
itself was a satisfactory indicator of the user’s intentions, and 

that noisy data could be filtered naively by delaying the signal 
until the position was held for a short time. As a result, this step 
could be done at a much lower cost by using any sort of existing 
consumer smart watch or armband that the user already wears 
with less overall bulk. By doing so, the required calibration of 
the Myo is also avoided entirely. A rider who wishes to use the 
LiteTurn system but does not own an appropriate wearable can, 
in theory, strap the phone to their wrist and achieve the same 
effect, although this is unwieldy and should generally be 
regarded as less safe.

    The second component involved hooking a Spark Core up to 
a Neopixel 24-LED RGB ring (Figure 3b) and providing a 
simple web API to send commands. A simple LiPo battery 
provided power to the micro-controller. Since the Spark Core 
requires a WiFi connection, cost and battery drain can easily be 
reduced by replacing the core with a simple micro-controller and 
bluetooth chip to pair directly with the user’s phone. To work 
around this limitation at HackTX, we connected the smartphone 
to a 4G network and set up a wireless hotspot for the core to 
connect to.

    The final component was the companion Android app, which 
brought both pieces together and added additional aesthetic 
features. Using GPS location bearings, we were able to 
determine when the user makes a turn or u-turn. Instead of 
combining accelerometer and magnetometer sensors, which is 
used in the Google Maps application to provide very precise 
measurements, we used GPS location changes to detect 
bearings. This doesn’t work over short distances, but the large 
distances traveled on bicycles makes it a perfect fit, with the 
added benefit that small, sudden turn changes won’t affect the 
turn readings. For example, if the user rides around the car in 
front of them, the combination of GPS location bearings and a 
10 meter minimum distance for detection will prevent a false 
positive. 

Fig 5: User-facing companion Android application to display 
sensor readings, control light status, and track user location.



V Final Experimental Implementation and Evaluation

    In the final experimental setup, the Thalmic Myo armband 
was replaced with a Samsung Galaxy S3 placed into a glove and 
tied in place with a rubber band, simulating a smartwatch with 
the screen facing outwards. In addition, the companion 
application was updated with a location tracker that marked each 
location update along with the points of gesture and turn 
completion detection.

      A testbed was set up in the Austin North Campus region with 
16 turns and a variety of road conditions. The path involves 
short and long stretches of road, flats, steep uphills and 
downhills, potholes and bumps, and occasional rain. Three trials 
were run for each test, varying the gesture recognition delay, 
gesture threshold windows, and location polling intervals.

Figure 6: The 16-turn testbed set up in Austin’s North 
Campus region.

     
Gesture Recognition Delay: First, we look at the accuracy and 
false positive rate of gesture recognition and turn completion 
detection at varying magnitudes of recognition delay. It is 
important to introduce an amount of delay into the system to 
abort turn recognition when the user does not hold the gesture 
for a long period of time, as false positives may then be reduced. 
Three tests were done at 0ms, 150ms, and 300ms delays. We 
observed an average false positive rate of 32.29% when no delay 
is in the system, with a 21% reduction after increasing to 150ms. 
A further increase to 300ms reduces the rate by approximately 
5.5%, but coincides with a gesture recognition accuracy drop of 
19%. 
  

0ms 150ms 300ms
Turn Recognition 

Accuracy
86.25% 84% 65.63%

End Recognition 
Accuracy

100% 100% 93.75%

False Positive Rate 32.29% 11.45% 5.88%

Figure 7: Gesture Recognition Delay versus Accuracy and 
False Positive Rates across 9 different trials.

YPR Divisions and Recognition Window: Second, we 
examine the recognition accuracy and false positive rate of the 
system under various orientation divisions and gesture window 
allowances. It is important to find a satisfactory balance between 
precision and natural allowance of the gesture when performing 
the physical act of cycling. Figure 8 shows the results of three 
division and window setups. At a 2-segment window within a 
20-division space, each gesture is allowed a 72-degree 
allowance within which they can be detected. However, due to 
the precision required by the right-turn gesture, the recognition 
module performs at a poor 78% accuracy rate. When increasing 
the number of segments to 3, the accuracy improves across the 
board but coincides with a 17% increase in false positive rate. A 
compromise of 5 segments within 40 divisions provides a 
satisfactory 90% average recognition accuracy with a 13.45% 
false positive rate.

2/20 3/20 5/40
Left Turn 

Recognition
85.70% 93% 81.25%

Right Turn 
Recognition

78% 100% 100%

False Positive Rate 11.44% 28.85% 13.45%

Figure 8: Recognition Windows versus Accuracy and False 
Positive Rate across 9 different trials.

Location Polling Interval: Finally, we observe the system 
effects of increasing the polling interval for GPS location 
coordinates. At a baseline of once per second and a minimum of 
10 meters traveled, a 90% recognition accuracy and 13.45% 
false positive rate is achieved. At both 1.5s/15m and 2s/20m, the 
recognition accuracy and false positive rate both plummet by 
approximately 15%. However, it is more desirable in consumer 
safety products to achieve high accuracy rates, as false positives 
will not be as detrimental to the safety of the user as a missed 
turn.

1s/10m 1.5s/15m 2s/20m
Turn Recognition 

Accuracy
90.63% 75% 71.88%

End Recognition 
Accuracy

100% 94% 96.88%



False Positive Rate 13.45% 0% 2.94%

Figure 9: Location Polling Interval versus Accuracy and 
False Positive Rate across 9 different trials.

False Positives
As Figure 7 and Figure 8 indicate, with some amount of 
recognition delay and a moderate window of 5/40, false 
positives can be limited greatly to approximately 10%. Common 
confounding actions performed naturally by cyclists while riding 
are allowed by the delay and orientation windows as long as 
these parameters are not too relaxed. These actions include 
repositioning of hands along the handlebars, riding one-handed 
or hands-free, and resting hands on the top tube of the bicycle. 
However, along stretches of steep hills, the elevation can alter 
pitch readings dramatically and set off unwanted turn 
recognition. Although this work does not account for this fact, 
solutions are considered in section VI.

Missed Turns
On the other end of the scale are missed turns, reducing the 
overall accuracy of the system. In all test cases, the gesture 
recognition module missed turns in one of the two small 
stretches of road, where turns came in quick succession and ran 
ahead of location polling. Due to the low resolution of location 
updates, the gesture recognition module must adjust orientation 
readings using outdated user bearings, resulting in misaligned 
yaw axis and a missed turn.

Figure 10: A precise section of road that introduces problems 
for the gesture recognition module. Green markers represent 
the end of a turn, while blue and pink markers represent the 
recognition of a turn gesture. A pink marker is missed within 
the area identified by the red circle.

VI Future Work

    Several challenges and issues arose during development of 
the LiteTurn product, and a number of these challenges are 
similar to those brought up in the RisQ paper for smoking 
gesture dectection[1].  In addition, there is a lot of room for the 

system to grow and further improve road awareness for both 
cyclists and motorists.

1. Robust, Extensive Testing:
    
    The trials presented in this work are limited in both scope and 
size due to the resources available at the time. Smaller parameter 
variations should be tested for optimal values, and larger sample 
sizes are required for the results outlined in section V to be 
significant. In addition, testing should be done using different 
test individuals to measure the adaptability of the system to 
various styles of riding and hand signaling. Furthermore, the 
system should be tested in denser urban areas, where tall, 
reflective buildings may confound GPS location coordinates and 
affect the accuracy of location bearings, which is depended upon 
in most aspects of the system. Finally, power use must be tested 
for system efficiency measurements.

2. Concurrent activities and confounding gestures:

    More work should be done in filtering noise from the various 
sensors. In particular, the orientation readings should undergo a 
low-pass filter and an averaging of the most recent window of 
values to smoothen the overall analog readings with little 
increase in latency. More precise orientation threshold 
combinations can reduce false positives due to less common 
poses while riding, such as one-handed riding, waving, or high-
fiving.

3. Robust, Adaptive Turn Completion:

    By using GPS location bearings, the LiteTurn product is able 
to determine when a turn has ended by checking the degrees 
between the current bearing and previous bearings in recent 
memory. However, not all turns are within some small threshold 
of 90 or 180 degrees; in particular, forked roads and lane-change 
signals will go undetected as small or even unchanged bearing 
readings. More precise sensors, such as accelerometers, can be 
used to detect momentary horizontal acceleration for lane 
changes, and a more robust system of detection, such as an 
adaptive timeout based on the change in bearings from one time 
step to the next, may be required to accommodate small-angled 
turns. Using Google Maps to infer road topology may also be an 
option for these types of turns.

4. Pitch Correction:

      As previously mentioned, steep hills can affect the accuracy 
of pitch orientation readings. Elevation information should be 
extracted from gyroscope readings or Google Maps cached data 
to offset this error.

5. Better coverage of motorist and cyclist activities:



    In addition to automatic handling of braking and rolling 
signals, the user may feel more comfortable using the braking 
hand signal, as it is an officially recognized gesture and should 
be detected by the LiteTurn system. The system should be able 
to detect this signal and react accordingly.

6. Methods of Activation:

      Although we focused on gesture recognition as a non-
invasive, natural extension of the officially-recognized cycling 
hand signals, it can be unnecessarily involved for riders who 
have not committed these gestures to physical memory. Other 
methods of hands-free activation are possible and may be more 
comfortable to the user, such as voice commands and more 
precise hand gestures like swiping and fist formation.

7. Consumer Aesthetics:

    The LiteTurn system in its neutral state has the potential to 
provide customized lighting aesthetics and animations due to the 
24 individually-addressable RGB LED Neopixel lights installed. 
Although this is unnecessary for the general LiteTurn system, a 
more expensive consumer line could sell these Neopixel lights 
for cyclists who wish to have more aesthetically pleasing 
hardware.

8. Implementation Revisited

    As is, the LiteTurn system takes advantage of a limited-use 
$150 Myo product and a $40 robust Spark Core micro-controller 
with an embedded WiFi chip. These components can be easily 
replaced by any of the increasingly popular smartwatches or 
wristband products and a combination of a cheap, sub-dollar 
micro-controller and bluetooth low energy chip to provide lower 
energy usage, lower costs, and more accessibility. The final 
form-factor should be small, energy-efficient, and cost 
approximately $10-20 to produce, at most. In addition, any GPS-
capable smartphone device should be adaptable into a Liteturn 
system controller.

9. Road Safety Extensions:

      Although the Liteturn system is already capable of replacing 
head and tail lights in favor of an all-in-one solution that 
provides all of the capabilities of turn lights installed in 
motorized vehicles, sensors have become smaller over the years 
and are more accessible for mobile consumer use than ever 
before, opening the possibilities for further automation and 
improvement of road awareness. Distance sensors can be 
installed on the rear end of bicycles to alert the rider of 
oncoming vehicles, and video sensors can be installed to process 

lane definitions and detect when the user is veering or has 
entered a turn lane.

VII Conclusion

      Personal mobile sensor networks are becoming more viable 
and accessible for a large number of consumers as sensors 
become smaller and smaller. These networks can play a major 
role in  improving and automating road safety and awareness for 
cyclists and motorists alike. This paper explored a single 
possibility, using commonplace mobile devices to recognize 
natural hand gestures and detect turn completions automatically 
without any thought or learning curve for cyclists. The Liteturn 
system was developed with accessibility and ease of use in 
mind, providing riders with a fully hands-free and automated 
way to signal their intentions to other travelers on the road 
without any cumbersome clothing or accessories to wear or take 
care of. In the future, we plan to make the Liteturn system even 
cheaper, more lightweight, and more energy-efficient by 
reducing the hardware down to its core components and relying 
on BLE to reduce the power footprint of our devices.
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