
Genetic Evolution of Aesthetically-Pleasing Fractals Using
Convolutional Neural Networks

Kevin Yeh
CS 395T: Robot Learning from Demonstration and Interaction

Fall 2015 | Austin, TX
kevinyeah@utexas.edu

Abstract— Computational evolution is a powerful and active
field of research that allows for the automation of control tasks.
However, much focus has been on the automation of tasks
whose performances can be quantitatively evaluated using a
fitness function. There is a need to develop and evolve methods
of evaluation that can measure qualitative value, making the
automation of more subjective and humanistic tasks possible.
This paper proposes a human-guided approach to forming a
generative model that will result in the consistent generation of
diverse, aesthetically-pleasing fractals. To do so, a convolutional
neural network is tuned on human-guided training feedback
through an interactive genetic evolutionary program.

I. INTRODUCTION

Fractals are defined as a curve or geometric figure, each
part of which has the same statistical character as the
whole”[1]. They have been researched extensively, due in
large part to the complex results that can arise from iterating
over simple processes many times, and fractals have been
found to model a wide range of natural phenomena. Each
fractal family is defined by a basic mathematical structure,
from which variations are created by altering the coeffi-
cients of the basic equation. Because these coefficients can
be represented by floating point numbers, determining a
genome for the fractals is potentially simple and can lead
to computationally light mutations, through slight alteration
of the coefficients, and crossovers, through an averaging of
the parents coefficients. It is also possible to expand upon
the process of generating offspring fractals by taking outside
factors into account, and entire families can be generated
programmatically through evolution of the equations them-
selves, creating potentially complex fractal patterns tended
towards certain desirable features.

While fractals have been researched for decades, many
problems remain unsolved. One major unsolved problem
is understanding what makes a fractal that is aesthetically
pleasing to many human beings. Although it is difficult
to make something and judge whether it will be generally
well-liked among a large, diverse populus, recent advances
in convolutional neural networks have made it possible
to classify images based on an almost arbitrarily diverse
array of characteristics, and previous work has been dealt
with analyzing subjective beauty using convolutional neural
networks (CNNs).

One major problem in the study of fractal aesthetics
is dealing with the massive sample space of all possible

Fig. 1: Visual representation of a non-sparse fractal (left)
and a sparse fractal (right).

equations that can be used to generate fractals. This large
sample space makes it difficult to generate fractals that are
aesthetically pleasing to humans because many equations
produce fractals that visit only a few points in the X-Y plane,
which we define in this paper to be sparse fractals. Sparse
fractals are non-stimulating to humans and finding a way
to filter these fractals out is key to presenting potentially
interesting fractals to the user.

In this paper, we combine genetic algorithms with convo-
lutional neural networks to form a generative model of non-
sparse fractals, in the hopes of optimizing towards a more
consistently dense aesthetic.

II. RELATED WORK

The mathematical nature of fractals provides no measure
of beauty for the resulting image, and the shape and structure
of the image is often difficult to predict. However, much
research has been made into guiding computational evolution
through the use of human feedback. A paper written by
Igor Karpov, titled Human-Assisted Neuroevolution Through
Shaping, Advice and Examples[2], discusses how humans
can utilize their superior intuition and analytical skills to
augment machine learning and create intelligent agents. The
paper explores three different methods of human-assisted
machine learning: giving advice in the form of rules, demon-
strating desirable behavior through example, and shaping
the machine learning process through increasingly complex
tasks. Karpov concludes that human-assisted evolution con-
sistently performs better than manual scripting and unassisted
evolution, though some forms of human assistance are better
suited for certain tasks such as obstacle avoidance and target



chasing. Using this approach, the task of measuring the
beauty of fractals falls not on the computer, but the user,
thereby eliminating the need for a fitness function of aesthetic
value.

In [3], Miura and Gobithaasan observe the detrimental
effects of Bezier, B-Spline and NURBS curves on the
formulation of shape aesthetics, and propose the use of Log-
Aesthetic (LA) curves as a simpler curvature alternative that
can be used to design more structurally sound industrial
structures with a cleaner curved aesthetic. They describe the
quality of curves and surfaces using a ”fairness metric” that
measures a planar curve based on whether it has a continuous
curvature with very few monotonic curvature pieces.

In [4], Datta et. al. build automated classiiers using SVMs
and classification trees, using features extracted from crowd-
sourced photo ratings from an online sharing website to form
a discriminative model of appealing photographic images.

In [5], Folz et. al. use similar classifiers and apply them to
a consumer-facing product that customizes photos to provide
procedurally-generated aesthetic photo enhancements.

In [6], Andrej Karpathy uses a deep neural network to
form a discriminative model of aesthetically-appealing selfie
images, scraped from Instagram and judged based on the
number of likes and user followers.

III. GENETIC REPRESENTATION OF FRACTALS

Visual fractal representations are defined as a set of
recursive mathematical equations outlining a sequence of
points in Cartesian space. To perform optimization of a
characteristic of a population using a genetic algorithm, a
sample population of randomly generated individuals must
first be provided. Due to the sparsity of the fractal space, a
basic seeded set of equations is often desired to ensure that
the initial population has a large percentage of fractals with
high visual density.

xn+1 = sin(a ∗ yn) + c ∗ cos(a ∗ xn) (1)

yn+1 = sin(b ∗ xn) + d ∗ cos(b ∗ yn) (2)

The equations (1, 2) represent a family of fractals com-
monly known as the Clifford Attractor family. To create a
new random generation, random constants are substituted for
a, b, c, and d in the above form.

To provide a workable representation of these equations
for use in genetic evolution, an expression tree can be used to
represent operations (non-leaf nodes), constants and variables
(leaves), and their mathematical relations.

IV. FRACTAL EVOLUTION WITH GENETIC ALGORITHMS

In a genetic algorithm, a population of candidate solutions
is evolved towards solutions that tend towards a feature
optimization. In the fractal space, these solutions (fractals)
have a set of expression trees made of operation and con-
stant/variable nodes that can be mutated and altered to build
a new generation of fractals.

Traditionally, the three evolutionary operations used in ge-
netic programming are crossover, mutation, and cloning. By

Fig. 2: An exemplary expression tree representing the
equation (a+ b) ∗ c+ 7.

keeping a record of previously generated fractals, however,
cloning becomes a redundant operation as the user can sim-
ply go back to a previously generated fractal and re-evolve
it. In this paper we address this problem of redundancy by
presenting a new evolutionary operator in place of cloning.

An important distinction to make when evolving fractals
is the difference between applying genetic operators to oper-
ations (non-leaf nodes) and constants/variables (leaf nodes).
Although there is a fair amount of variety within a fractal
family (i.e. a constant set of functions that are varied by
varying their constants, such as the aforementioned Clifford
Attractor family), applying genetic operators only to leaf
nodes prevents the evolutionary process from exploring the
true fractal space, containing it within a single fractal family.
As with all genetic programs, a great deal of care is necessary
to balance exploration and genetic drift with convergence to
a satisfactory solution.

A. Crossover

Crossover is a genetic operation in which two parent
fractals are combined to produce child solutions. In the
fractal space, two fractals perform crossover by randomly
picking one node from each of the fractals and swapping
them. Within the evolutionary program built for our experi-
ments, one of these is chosen at random, while the other is
discarded.

B. Leaf Mutation

Mutation is a genetic operation in which a single parent
fractal has one of its gene values altered from its initial state.
In this paper, we distinguish between two types of mutation:
leaf mutation and a modified type of mutation performed on
non-leaf nodes: mutation by insertion.

Leaf mutation is used as a way of limiting genetic drift
and inconsistency by taking an existing satisfactory fractal



(a) Before Insertion. (b) After Insertion.

Fig. 3: Mutation by Insertion. The (x) node in Figure 2a is
replaced by the (x*y) tree in Figure 2b.

and slightly fuzzing its constants, resulting in a very similar
visual representation.

C. Mutation by Insertion

Since the program supports switching back to previous
generations, cloning is redundant as users could simply
go back to previous generations and re-generate the next
generation of fractals. For this reason, a new operation called
insertion was implemented.. Insertion is a modification of
the generic mutation operator that alters the expression tree
for each fractal equation by picking a random leaf node
and substituting a small, randomly generated expression tree
for that leaf node. This randomly generated expression tree
thus becomes a subtree in the original expression tree. The
generated expression tree is formed to be probabilistically
similar to the tree that it is replacing, to minimize the change
in expression structure.

A randomly generated expression tree is created by ran-
domly generating a single node that is either an operator,
variable, or constant. If the node is an operator, then that
node must have child nodes to perform the operation on.
In this case children are randomly generated for that node
by applying the same procedure recursively. This process
continues until all leaf nodes of the expression tree are either
variables or constants, i.e. they take no parameters.

One of the main benefits observed from implementing
this operator is that new operators are able to appear in a
fractals equation. As stated earlier in the paper, our program
uses the Clifford Attractor general form when creating the
first generation of fractals. This general form only uses
four operators: sin(), cos(), +, and ∗. Thus, crossover,
mutation, and cloning of fractals will only yield fractals
with a combination of these four operators, as mutation is
not easily applicable across the discrete domain of function
structure. By using insertion, however, we are able to define a
larger set of operators that can appear in the fractal equations
and thus allow for more variety in the fractals.

Fig. 4: Two sparse fractals. Scattered points (left) and
highly-linear fractals (right) are strong indicators of fractal

sparsity.

V. A GENETIC FITNESS FUNCTION: FRACTAL SPARSITY

A major problem encountered when randomly evolving
fractals is dealing with the large number of sparse fractals
that appear in each generation. Here, the definition of a sparse
fractal is one made aesthetically unappealing due to its lack
of density and form. In quantitative terms, the sparsity of a
fractal can be defined by one or both of the following main
features:

1) An insufficiently large quantity of distinct points in
Cartesian integer space.

2) A lack of non-linear figures (e.g. curves).
From the above criteria, a method was developed in order

to quantitatively rank fractals as being sparse (”bad”) and
non-sparse (”good”). The first approach was to use the ratio
of black to white pixels in the saved 640x360 image to
determine how much of the image was covered by the fractal.
However, at some point, the aesthetic appeal of a fractal
decreases as its visual density increases. For instance, a
large black square is dense, yet visually unappealing to most
humans.

The final method devised was able to ensure both criteria
were met with a high rate of success and did not require
much computation. Instead of looking at the individual pixels
in the image of a fractal, the program examines the image file
itself, specifically at how large the image file is in bytes. To
understand this methodology, we must describe the format
of the images created by the program.

The fractal visualization program uses the PNG image
format for saving images of the generated fractals. PNG
is a lossless image format, meaning no data is lost when
saving the image. In contrast, formats like JPG sacrifice
data quality for the sake of smaller image sizes. Thus, PNG
encoders can only reduce the size of the output file through
lossless compression techniques. The specific compression
algorithm used by PNG encoders is called DEFLATE, the
same algorithm used by ZIP archives. One such technique
is to find large regions of one color and compress that
region to a single block of information in the output file.
This technique is very effective at reducing the sizes of
images that are composed only of drawn lines because the
encoder can compress each of the lines by using LZ77
compression, a method that looks for and replaces repeated
sequences of data. This compression technique also highly



Fig. 5: Two rendered fractals. The non-sparse image on the
left is represented in 2.1 kilobytes, while the image on the

right is 0.68 kilobytes.

compresses images with very few points that are different in
color than the background because only a few points need
tobe individually saved in the output. Thus, PNG encoders
effectively compress sparse fractal images. Exploiting this
fact, we are able to define a size threshold for the PNG files
of sparse fractals. For fractals rendered at a resolution of
640x360 pixels we defined the sparse/non-sparse cutoff to be
approximately 1 kilobyte, and experiment with the deviation
from this range to determine especially ”good” and ”bad”
fractals for neural network tuning.

VI. LEARNING A GENERATIVE MODEL WITH
CONVOLUTIONAL NEURAL NETWORKS

The evolutionary program is split into two parts. The Java
Swing frontend displays a range of fractal images on-screen
for the user to interact with, providing tools for human-
guided evolution of the fractals’ genetic structures, while the
C++ backend utilizes OpenGL to evaluate fractal equations,
generate appropriate image files, and render fractals in high
definition for closer inspection. The equation for the fractal
is interpreted in Java with the help of the Exp4j library,
which converts infix representationsof equations into postfix
notation. Using the postfix representation of the equation,
an expression tree is created with operation nodes and value
leaves. Representing fractals in this form allows mutation
and crossover of both constants and equation forms.

For interactive training and evolution, users are provided
with a 3x3 grid of fractals constituting a single generation.
The first generation is seeded with Clifford Attractors of
variable constant values, and the next generation is formed
through reproduction between fractal parents chosen ran-
domly from the set of user-selected fractals. If no fractals
are selected, the generation is regenerated. If one or more
fractals are chosen as potential parents, the next generation
is created as follows:

1) The three fractals in the top row of the viewport are
generated using crossover, whereby two parents are
randomly selected, and randomly selected subtrees of
thoseparents function trees are swapped.

2) The three fractals in the middle row of the viewport
are generated using mutation, whereby a parent is
randomly selected and each constant in that parents
parse tree has a random chance of being mutated by a
small amount.

3) The three fractals on the bottom row of the viewport
are generated using insertion.

Fig. 6: The interactive evolutationary program. The RGB
variables are not used in the presented tests.

Each generation is calculated and drawn in parallel, run-
ning nine threads for each generational child.

To observe quantitative results, this training process is
automated using the file size metric previously described to
determine positive and negative examples of good fractals.

These positive and negative examples are fed to Clarifai’s
CNN tuning system, which allows a basic CNN, trained
on ImageNet and other competitive image knowledge bases,
to be tuned to other, more specific features. Approximately
1000 total examples, half positive, half negative, were pro-
vided for training in each experimental case. The final
Clarifai model was then used as to replace the sparsity
metric in a new automated evolutionary process through
1000 iterations. The average sparsity for each generation was
recorded and plotted in Fig. 7-9.

VII. EVALUATION

To test the ability of our neural network, combined with
our evolutionary algorithm, to optimize towards dense frac-
tals, we first use our filesize sparsity metric to generate
500 positive and 500 negative fractal samples. We consider
positive fractals to be those at least 1.3 kilobytes, and
negative fractals to be below 0.7 kilobytes. After training our
network, we can then use it to graph the trends of average
sparsity using our hard metric and the neural network across
1000 additional generations.

In figures 7 and 8, it is clear that the neural network shows
the same trend across 1000 generations as the quantitative file
size metric. There is a signiicant dip in average quality for the
first two hundred generations before rising sharply between
generations 200-300, at which point it mainly stabilizes
around an average file size of 1.45. The dip in quality can
possibly be explained by crossover and mutation, which al-
lows the evolutationary algorithm to explore the wide fractal
space by rapidly modifying their expression structures dra-
matically instead of converging to better fractals. However,
there is a 50-node cap on the height of an expression tree,
and the steep increase across generations 200-300 can be
explained by this cap being reached across all of the fractal
expressions, reducing the exploratory step from generation
to generation and allowing fractals to converge more rapidly



Fig. 7: The average image file size (kb) across 1,000
generations using the generative CNN model.

Fig. 8: The average neural network score across 1,000
generations using the generative CNN model.

at this point in time due to more consistent expression
structures. The smaller dips and peaks after generation 300
can be explained as rarer generations in which cross-over
and insertion result in a large population of ”bad” or ”good”
fractals in a generation, intuitively poisoning the well or
allowing the program to overcome a local optimum and find
a better peak.

In figure 9, we can observe the number of negative fractals
across 1,000 neural-network-generated fractal populations.
Following the trend seen in the previous two charts, we
can observe the number of negative fractals start around 2,
increase to around 3 until generation 300, then drop down
and vary between 0-2 per generation, occasionally reaching
3 and rarely reaching above it.

Fig. 9: The number of sparse fractals per generation, as
determined by image filesize under 1kb, across 1,000

generations using the generative CNN model.

VIII. FUTURE WORK

In the future, more detailed analysis is necessary to explain
the results seen. File size and neural network confidence
scores should be observed based on the type of genetic op-
eration used to generate fractals. Parameters such as file size
and confidence score cutoffs should be experimented with to
observe how they change the general trend of evolution, if
at all, to be more or less selective. The discriminative neural
network model should also be observed in regards to the
known basis of positive and negative fractals to see if there
is a strong correlation between the model’s confidence scores
and a fractal image’s file size.

The interactive program is general enough to allow extra
variables to be removed or added, and it would be interesting
to experiment with neural-network guided evolution using a
more subjective, human-guided fitness function that involves
the use of RGB color expressions defined based on the
XYZ variables. Another, more complex and reliable fitness
function related to the curvature of the fractal would likely
provide additional support for the evolutationary program to
optimize towards a specific curved or sharp aesthetic.

A more subjective experiment using real human-guided
training can reveal insights into how well a convolutional
neural network can deal with more complex, implicit aes-
thetics.

IX. DISCUSSION AND CONCLUSION

Machine learning and Learning from Demonstration (LfD)
techniques have often been used to automate control tasks
with quantifiable evaluations. However, as humans, personal
preferences, emotions, and aesthetics often play a role in
how we perceive the world, and how we perceive art. The
work presented in this paper shows promise that robots and
computers can learn to understand, implicitly, the quantifi-
cation of aesthetic values and, perhaps, to learn how to



create art for the pleasure of human beings. Though further
work is desired to test the combination of genetic evolution
and neural networks in the realm of more complex, implicit
humanized aesthetics – ones that cannot be easily modeled
or quantified by hand – there is promise that, on some level,
computers can learn the aesthetics that make art come to life.

REFERENCES

[1] ”fractal, n.1.” OED Online. Oxford University Press, September 2015.
Web. 28 November 2015.

[2] Igor Karpov, Vinod Valsalam, Risto Miikkulainen. ”Human-Assisted
Neuroevolution Through Shaping, Advice and Examples,” In Pro-
ceedings of the 13th Annual Genetic and Evolutionary Computation
Conference (GECCO 2011), Dublin, Ireland, July 2011.

[3] K.T. Miura, R.U. Gobithaasan. ”Aesthetic curves and surfaces in
computer aided geometric design,” Int. J. Autom. Technol., 8 (3) (2014),
pp. 304316.

[4] Datta, Ritendra, Dhiraj Joshi, Jia Li, and James Z. Wang. ”Studying
Aesthetics in Photographic Images Using a Computational Approach.”
Computer Vision ECCV 2006 Lecture Notes in Computer Science
(2006): 288-301. Web.

[5] Joachim Folz, Christian Schulze, Damian Borth, and Andreas Dengel.
2015. Aesthetic Photo Enhancement using Machine Learning and Case-
Based Reasoning. In Proceedings of the 1st International Workshop on
Affect & Sentiment in Multimedia (ASM ’15). ACM, New York, NY,
USA, 27-32.

[6] Karpathy, Andrej. ”What a Deep Neural Network Thinks about Your
#selfie.” What a Deep Neural Network Thinks about Your #selfie. N.p.,
25 Oct. 2015. Web. 02 Dec. 2015.


	Introduction
	Related Work
	Genetic Representation of Fractals
	Fractal Evolution with Genetic Algorithms
	Crossover
	Leaf Mutation
	Mutation by Insertion

	A Genetic Fitness Function: Fractal Sparsity
	Learning a Generative Model with Convolutional Neural Networks
	Evaluation
	Future Work
	Discussion and Conclusion
	References

